大多数基于PC的视觉系统都可以执行检测任务,在设计构缺陷检测系统时,首先需要确定要完成什么样的检测任务以及该任务对性能的具体要求。例如在电子产品制造中大多数视觉系统用于发现有缺陷零部件,那么摄像头加上视觉系统能看到缺陷吗?回答这个问题常常需要先建立一个不良品和良品测试数据库,然后在这个基础上构建一个使用该图像数据库作为样本的样机系统,这种方法的优点是对样机只需很少改动就能得到正确的软件设置。
照明系统的选用
照明的另外一个目的是减小反射。有时反射来自周围自然光线,会随时间而变化,因此同样的场合白天和夜晚相比光线变化要大得多,这就需要配置照明或使用光罩,以遮挡周围的光线。
硬件考虑因素
另外一个要决定是用彩色还是单色。虽然彩色摄像头能够产生更吸引人的图像,但彩色并不能增加多少有价值的信息,而且一般情况下需要用更多的时间来进行处理(单色图像通常是8位/像素,而彩色图像需要32位/像素),这一点在测量边缘距离应用中特别突出。然而有时候色彩是唯1辨别因素,这时彩色就变得很重要,例如在检测熔断丝、电容或电阻时可能需要搜索某种特定的色彩。对于高分辨率彩色应用场合,可以考虑使用三片式或RGB摄像头。
在选择基于PC的视觉系统时,还需要图像采集硬件,这时要考虑的特性包括驱动软件,以及硬件能否很好与运动控制和数据采集集成在一起。例如可以用运动控制监测部件传送带的速度,使得图像采集与整个流程同步;还可以将机器振动、压力监控和温度控制包括在生产系统中,以便预先制订维护计划。用户能够很容易将传送带控制与图像采集硬件集成在一起,从而在数据采集硬件、软件和运动控制之间实现同步,得到一个完整的解决方案。
边缘检测
也可以用边缘检测来检测部件上某个特定部分,它对部件上的边缘数进行计数,然后将这个数与预置数据相比较,依此完成搜索。如果值匹配,说明部件上找到这一部分,如果值不匹配,就认为部件有缺陷。
关于边缘的定义是指图像中相邻像素灰度值出现明显变化的区域。边缘检测沿搜索区域对一个一维曲线像素值进行搜索,一维搜索区域可以是直线、圆弧、椭圆弧、矩形或多边形的边界,或者手绘区域的边线,软件对沿线像素值进行分析,检测是否有明显的强度变化。
用户可以指定强度变化的临界值,以判定什么样的变化构成边缘,这些参数包括:边缘强度,用来定义背景和边缘之间灰度值最小差;边缘长度,指边缘和背景之间产生所需灰度差必需距离;边缘极性,判断边缘是往上升的边还是往下降的边;边缘位置,用来确定图像中边缘的X,Y坐标。通过改变这些值,用户可以用编程方法定义各种临界值,以发现不同成像环境下的各个边缘。
产品缺陷图形匹配识别
当图像没有缩放和旋转时,标准互相关是探查图形一个很好的方法,互相关一般能检测同一尺寸图形旋转5至10度后的图像。但将相关计算范围进行延伸以检测那些比例变化和旋转较大的图形则比较困难,对于按比例变化的图形,用户必须重复缩放或调整模板尺寸,然后进行相关运算,这给匹配过程增加很大工作量;而对于旋转的处理更加困难,如果能够从图像中找到有关旋转的线索,则可以简单地旋转模板并进行相关运算,但如果旋转的性质不知道,寻找适合匹配需要对模板进行尽可能多的旋转处理。