欢迎来访宁波研新工业科技有限公司官网!

 src=http_%2F%2Fbpic.588ku.com%2Felement_origin_min_pic%2F17%2F07%2F18%2F17defa7b13483cebb42b9f8f62502ade.png173-2131-5416

src=http_%2F%2Fbpic.588ku.png   0574-88016518

您当前的位置 : 首 页 > 资讯动态 > 行业动态

基于机器视觉的表面缺陷检测存在哪些问题

2020-10-23 16:00:54

中国是一个制造大国,每天都要生产大量的工业产品。用户和生产企业对产品质量的要求越来越高,除要求满足使用性能外,还要有良好的外观,即良好的表面质量。但是,在制造产品的过程中,表面缺陷的产生往往是不可避免的。

人工检测是产品表面缺陷的传统检测方法,该方法抽检率低、准确性不高、实时性差、效率低、劳动强度大、受人工经验和主观因素的影响大,而基于机器视觉的检测方法可以很大程度上克服上述弊端。

美国机器人工业协会(RIA)对机器视觉下的定义为:“机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置”。

机器视觉检测系统通过适当的光源和图像传感器(CCD摄像机)获取产品的表面图像,利用相应的图像处理算法提取图像的特征信息,然后根据特征信息进行表面缺陷的定位、识别、分级等判别和统计、存储、查询等操作;

视觉表面缺陷检测系统基本组成主要包括图像获取模块、图像处理模块、图像分析模块、数据管理及人机接口模块。


图像获取模块

 图像获取模块由CCD摄像机、光学镜头、光源及其夹持装置等组成,其功能是完成产品表面图像的采集。在光源的照明下,通过光学镜头将产品表面成像于相机传感器上,光信号先转换成电信号,进而转换成计算机能处理的数字信号。

基于机器视觉的表面缺陷检测存在哪些问题

图像处理模块

 图像处理模块主要涉及图像去噪、图像增强与复原、缺陷的检测和目标分割。

 由于现场环境、CCD图像光电转换、传输电路及电子元件都会使图像产生噪声,这些噪声降低了图像的质量从而对图像的处理和分析带来不良影响,所以要对图像进行预处理以去噪。

 图像增强目是针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果的图像处理方法。

 图像复原是通过计算机处理,对质量下降的图像加以重建或复原的处理过程。图像复原很多时候采用与图像增强同样的方法,但图像增强的结果还需要下一阶段来验证;而图像复原试图利用退化过程的先验知识,来恢复已被退化图像的本来面目,如加性噪声的消除、运动模糊的复原等。

 图像分割的目的是把图像中目标区域分割出来,以便进行下一步的处理。


图像分析模块

 图像分析模块主要涉及特征提取、特征选择和图像识别。

 特征提取的作用是从图像像素中提取可以描述目标特性的表达量,把不同目标间的差异映射到低维的特征空间,从而有利于压缩数据量、提高识别率。

 表面缺陷检测通常提取的特征有纹理特征、几何形状特征、颜色特征、变换系数特征等,用这些多信息融合的特征向量来可靠地区分不同类型的缺陷;这些特征之间一般存在冗余信息,即并不能保证特征集是最优的,好的特征集应具备简约性和鲁棒性,为此,还需要进一步从特征集中选择更有利于分类的特征,即特征的选择。

 图像识别主要根据提取的特征集来训练分类器,使其对表面缺陷类型进行正确的分类识别。


产品缺陷检测

 产品缺陷检测方法可以分为三种。

 第 一种是人工检测法,这种方法不仅成本高,而且在对微小缺陷进行判别时,难以达到所需要的精度和速度,人工检测法还存在劳动强度大、检测标准一致性差等缺点。

 第二种是机械装置接触检测法,这种方法虽然在质量上能满足生产的需要,但存在检测设备价格高、灵活性差、速度慢等缺点。

 第三种是机器视觉检测法,即利用图像处理和分析对产品可能存在的缺陷进行检测,这种方法采用非接触的工作方式,安装灵活,测量精度和速度都比较高。同一台机器视觉检测设备可以实现对不同产品的多参数检测,为企业节约大笔设备开支。


差值检测缺陷

 待检测物品的缺陷表现在图像上,即为缺陷处的灰度值与标准图像的差异。将缺陷图像的灰度值同标准图像进行比较,判断其差值(两幅图灰度值的差异程度)是否超出预先设定的阈值范围,就能判断出待测物品有无缺陷。


表面缺陷类型

 在实际应用中,不同产品对缺陷的定义也不一样。一般来说,产品表面缺陷分为结构缺陷、几何缺陷和颜色缺陷等几种类型。

 常见的工件完整性检测属于结构缺陷检测,尺寸规格检测属于几何缺陷检测,而印刷品质量检测中常需要进行颜色缺陷检测。


标签

最近浏览:

底部导航

网站首页               关于我们            产品中心           

研发合作               资讯动态            人才招聘          

在线询价


联系方式

手机:0574-88016518      邮箱:xumin@newvin.cn

网址:www.newvin.net

地址:宁波市鄞州区金辉西路177号3号楼5楼


二维码图片_10月30日14时52分46秒.jpg

Copyright © 宁波研新工业科技有限公司 All rights reserved 备案号:浙ICP备18055529号 主要从事于视觉检测设备,工业视觉检测设备,视觉检测设备公司, 欢迎来电咨询! 服务支持:
视觉检测设备工业视觉检测设备视觉检测设备公司 祥云平台 提供技术支持